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1. INTRODUCTION
\'¢ shall give a finitely convergent procedure for solving the problem
(P) Max*mize f(x) subject to aix + b1 20,1i=1, . . . , m,

where f is a strictly concave and differentiable function of the n-vactor
X which assumes 1its unconstrained maximum, The a1 are n-vectors and

the b1 are scalars,

No additional assumptions whatever, for example regarding the
exclusion of degeneracy or the existence of a feasible solution of {P),
are required. In fact the presence of degeneracy can only hasten conver-
gence, and no perturbation, either real or virtual, is ever required.

It (P) is infeasible, tie procedure detects this fact routinely and
terminates with a display of an infeasible subset of the constraints.
Thus no feasible solution is needed to initiate the calculations.

An interesting aspect 1s that provision is made for making effective
use of prior information which may be available regarding which constraints
are likely to be binding at the optimum solution of (P) (under the tenta-
tive assumption that (P) is feasible).

The present method is rot a 'gradient” or "simplicial" or approximate
method. It is aimed directly at constructing a solution of a certain
version of the Kuhn-Tucker Ccnditions [7] for (P), which are necessary
and sufficient for an optimal solution. It can be interpreted as
solving a finitely convergent and "slowly changing" sequence of simpler
maximization problems involvirg only linear equality constraints.

When f£(x) 1s quadratic the metiiod specializes to a promising

generalization of Theil and van de Panne's algorithm for quadratic
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programming [8), with the added generality being that (a) certain
restrictive assumptions (rdgarding the feasibility of (P) and the

exclusion of degeneracy) are shown to be completely unnecessary, and (b)
provision is made for utilizing prior information regarding a given problem
so as to shorten the calculation time.

In order not to obscure the fundamental approach, in the next section
we derive the basic procedure and illustrate it by example under two
simplifying assumptions. These assumptions are removed in the following
section. Specialization to the quadratic case is the subject of the
penultimate section, and finally we discuss some computational considerations
and give a modification which permits linear equality constraints to be
handled efficiently.

Lengthy interruptions of the text are avoided by placing formal

statements and proofs of all theorems in the Appendix .

By way of preliminaries, we introduce two definitions. A subset S

of constraint indices is said to be consistent when the set (x: aix

+ b,

1 ¢ 8, are linearly independent. %hc eupty sot is considercd to be both

0, 1 € S) is not empty, and independent when the n-vectors a,,

consistent and independent. We denote by M the set of the first m posi-
tive integers, where m 1s the number of constraints of (P). The gradient

of f(x) is denoted by Vf(x).



2. DEVELOPMENT UNDER TWO SIMPLIFYING ASSUMPTIONS

Throughout this paper, f(x) is assumed to be as stated in the
introduction. For the sake of expository convenience, in this section we
also temporarily assume (a) that (P) 1is feasible, which implies that (P)
has a unique optimal solution x' , and (b) that the set B = (i € M: aix*+ b1= 0,
is independent.
Since our computational procedure is based on constructing a solution
of the Kuhn-Tucker Conditions for (P) , we begin by recording without

proof a version of Theorem 3 from (7], as specialized to (P) . This

particular version was introduced in (6, Ch. 3].

Theorem (Kuhn-Tucker):

Assume that f(x) 1is differentiable and concave. Then a trial solution
xo is an optimal solution of (P) 4if and only if for some subset So E M
of constraist indices there exist m real numbers (dual variables) u?

such that (xo, uo) satisfies the associated (Kuhn-Tucker) conditions:

- \Y) ): a =
) (KT-1) £f(x) + 25 Wy 0
(KT-2) aix + bi =0, 1€ 8S; u, = 0, 1 € M-S
2 0,1¢ M-S

(KT-3) aix + oi

(KT-4) u, 20, 1 €5,

The method suggested below for constructing a solution of the Kuhn-
Tucker Conéitions (KT-1,..., 4) 1involves solving for certain trial sets
S C M, the equations (KT-1) and (KT-2) (together designated by the symbol
(=S) ) and then checking the inequations (KT-3) and (KT-4) to see if they

are satisfied. If they are satisfied, the desired optimal solution of (P)

is obviously at hand. This approach



suggests the following important definition. A set s C M 1is said to

be valid if and only 1f there exists a pair (xo, uo) which satisfies

(KT-1, . . . , 4) associated with s® . It is shown in Proposition 1
(see the Appendix for the proofs of this and subsequent propositions)
that for any consistent and independent trial set S S M the equations
(=S) have a unique solution (xs, us) , and it will be

shown in sccticn 2. bclow that there is at least one valid set,

and that every valid set is consistent and independent. Thus we see that

the problem of solving (P) can be viewed as the problem of finding a

valid set S'.l ; for then by the definition of walidity (=S‘) yields

as its unique solution an optimal solutiion x* of (P) and the corres-
ponding dual variables u* . How one may go about finding e valid set
is the main concern of the balance of this paper.

2.1 Characterizing a Valid Set

It is shown in Proposition 2 that there exists at least one triple
* * % * %
(x , u,S) satisfying (KT-1, . . . , 4) , and that (x , u) |is
x
unique. It is clear irom the nature of (KT-1, . . . , 4) that S

can be taken as any set S satisfying A C S C B , where we make the

definitions
*
A = (i¢e M: uy > 0}
B ={1¢M *+b, =0)
el oaix+1— .

In words, the set A is the collection of constraint indices corresponding
to the constraints which are active at the optimum of (P) 1in the sense
that their dual variables are strictly positive, and B is the set of

indices corresponding to constraints which are binding at the optimum,

*
From (KT-2) and (KT-4) , A < B . Conversely, it is clear that S



* %
must satisfy A CSCB , orelse (x, u, S) cannot satisfy

(KT-1, . . . , 4) .

From these and previous remarks we have the following characterizations
of validity: S C M 1is valid if and only if A EES B if and only if
S 1s consistent and independent and (xsi us) satisfies (KT-3) and
(KT-4) in addition to (=S) .

Unfortunately, neither A nor B are likely to be known a priori,
so that the identity of a valid set is not immediately available from
the first characterization. From the second characterization we do have,
hovever, (a) the useful necessary condition that a valid set must be
consistent and independent, which enables the search to be restricted to
such sets, and (b) a convenient test for validity to apply to such
candidates.

2.2 Determining the Order of Trials

The fact that there is but a finite number of subsets of M
immediately estatlishes the existence of a finite procedure for findiag a
valid set--enumeration of consistent and independent sets. A non-repeating

sequence <Sv> of such trial sets terminates at the first trial for which

v v
v
(xs 4 uS ) satisfies (KT-3) and (KT-4) associated with S , i.e.

at the first valid SU . When m 1is large, of course, undirected enunmer-
ation is likely to be computationally impractical. We therefore develop
rules for directing the enumeration so as to keep the number of necessary
trials relativeiy small.

If S5 1is nct valid, then either S-B # 0 or A -S £ 0 , or both,
For obvious reascns the set S-B will be called ine excess of S ,
and A -S will be called the ceficiency of S . Clearly the smallest

change in S which would lead to a valid set would be to add its deficiency
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and delete its excess. The number of indices in (A -SJU{(S-B ]} 1is
therefore a measure of the distancei/ d(S) between S and the nearest
valid set. If S 1s consistent and independent, as well as invalid,

S
then by the second characterization of validity we have aix + b1 <0

S
for scme 1 ¢ M-S , or u1 <0 forsome 1€ S , or both. An event of

the former type will be called a feasibility alarm, and an event of the

latter type an optimality alarm. A feasibility alarm from the deficiency

will be called a real alarm, as will an optimality alarm from the excuss

of S .

An appealing conjecture is that the feasibility alarms coincide with
the deficiency, and that the optimality alarms coincide with the excess of
a consistent and independent but invalid set S . 1If this were true,
then by solving (=S) one could immediately determine the identity of a
valid set. Unfortunately this conjecture of perfect coincidence is not
true in general, as can easily be shown by cournterexample (even for the
simple case n =2 and f(x) diagonal quadratic; see the example of
section 2.3). What can be shown (Proposition 3), however, is that at least

one alarm *'s real., This result suggests a procedure for determining the

order of trials by essentially heeding the alarms cne at a time. By
heeding an alarm we mcan adding to 8 a constraint which gives a feasibility
alarm, or deleting from S a constraint which gives an optimality alarm.

For converience of exposition, we assume temporarily that <'i{ is consistent

Lo
= [ P

=~ mhe diztcarc2 betvecn a cet CC M and a set DT M can be
defincd as tse mrber cf elements i the syvmmetric diierence set

(c-DJy(D-C} .



and independent whenever S 1s consistent and independent and 1 is a
feasibility alarm due to S ; this assumption will then be removed.

Let So be an arbitrary consistent and independent initial trial set,
and let it be invalid (i.e. let d(So) 21). If s happens to yiold
exactly one alarm 10 , then by Proposition 3 it is real and therefore
d(so + 10) = d(So) = 1 . Here we use the notation So + 10 to mean
S°U1° or So-i0 according as 10 £S or 10 € S (1.e. accord’rng as
10 is a feasibility or an optimality alarm), in order to avoid having to
distinguish between feasibility and optimality alarms. If So yields
more than one alarm, then by Proposition 3 we have d(So + 1) = d(So) -1
for some 1 ¢ T , where 1 1is the collection of alarms due to s .
Therelore by trying each of the sets S° 41, 1€ T, we would obtain
at least one set which is closer to the closest valid set (and, in fact,

closer to every valid set)., We call this the first generation of trials.

1f d(So) = 1 , then a valid set is found during the first generation of

o]
trials; if d(S ) > 1 , a second generation of trials 1is necessary.

For each 1€T , define T1 to be the set of alarms generated by

s®+1 . Since d(So) > 1 , we have T1 Z9 (1€ T) . The second gener-

ation of trials consists of the sets So £+ 414 -+>3 forall 1€ T and
J € T1 . The symbol s® x4 2 J means, of course, (So = 1)Yj 1if
j g (s°+1) and (s° £1) -3 4f je(s® £ 1) . By Proposition 3,

d(s® 1+ 3) =d(s°) -2 forsome 1¢T and j €T 1t d(s%) =2,

i
then a valid set is found at this generation; 1if d(So) >2 , a third
generation 1s necessary.

Continuing analagously, one constructs third and higher order

generations as necessary. If at any trial a set is encountered which has



been tried before, it may, of course, be discarded.

It is clear that this search strategy terminates after exactly d(So)
generations of trials with the (unique) valid set which is closest to So 0
and that computational economies can be achieved due to the fact that
changes in trial sets involve adding or deleting only one constraint

at a time. A summary follows.

Rules for Ordering the Trials

0. Let $° bc condlstint and irkpendent, and let T be the set of
alarms determined by s®. 1f T= P , then s® 1s valid and the

procedure terminates; otherwise, a first generation of trials is

necessary.
1. At the first generation of trials, for each 1 ¢ T let T1
denote the set of alarms generated by x4, 12 T = p for

i

% *
some 1 ¢ T , then So = | is valid and the procedure terminates;

otherwise, a second generation of trials is necessary.

2. At the second generation of trials, for each 1 ¢ T and j € T1 .

let T1J be the set of alarms generated by so 4 =3 . If
|

]
T1J = f for some 1 € T ,and J € 'l‘1

is valid and the procedure terminates; otherwise, a third gomeration

o, x, *
* , then S = & J

of trials 1s necessary.
3. Third and higher order generations of trials are constructed
analagously.

(if at any trial a set is encountered which has been tried previously,

it may be discarded).
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It has becen temporarily assumed that SU:l0 is consistent and independent
whenever S 1is and 10 is a feasibility alarm due to S . By the nature
of the above rules, the effect of this assumption is to ensure that every
trial set at every generation 1s consistent and independent, so that
Proposition 3 can always be applied. This assumpticn may be dropped by
appealing instead to Proposition 4, which asserts that SUi0 is independent

when it is ccnsistent, and that if SU1o is inconsistent then the equations

% =
185 zia1 + aio 0

have a unique solution zb o zf <0 for at least one 1 1in the excess

of SUio , and [(SUio) - i} 1s consistent and independent for any i
S

such that z1 <0 . It follows that the apbove rules are applicable
if we interpret "uptimality =2larms" as being defined for incomsistcnt sets SU
as the constraints corresponding to zi < 0 . The resulting procedure is
given in Figure 1 (ignore for the time being the positive branch of step
2b, which 1is irrelcvant when (P) 1is feasible).

Step 4 of Figure 1 can obviously pe omitted when an optimality alarm
is veing heeded, for the result can only be another consistent
ana independent set. It can also be omitted when a feasibility alarm is
being heeded. For example, when f(x) 1s quadratic (see section 4)
step 3 can go directly to step la and any inconsistency will be auto-
matically detected during the calculations, thereby commanding transfer
of control to step 1lb. When a method is us2d for step la which does not
routinely and quickly reveal inconsistency of the trial set, step 3 should
go toc step lb when a feasibility alarm is being heeded--if the equations of

step 1lb have no solution (and efficient matrix partitioning methods

[4; Appendix C of 6] should be used here) then control
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Choose an initial |
consistent and inde- |
pendegt S5° , and put I

’..._...___’

G ..
W=

, —

la ¢ v . b/
Solve the system of Solve the system of
equations equations :
vf(x) + .. u,a, =0
ie i1 5 zi ai + ai =0
+ = i
a.x bi O, 1ie6S s'io o}
- ~ 1 - Q
BTN SICRE ARG for their (unique) solution
for its {unigue) I zS , Vhere i is the index
solution (xS us) | °
i ) | of the feasibility alarm
| !
' i_Which 1lcd to S __l
i
2a ¢ - éb . - .
£ 8 . / \Yes
RiRS OV el \Jo_fo., ° 20, Vies-1_ 1)

Yes 5 ! ' 3
\ a,x” + bi 20,y ieM-517/

/

Terminate; (P) infccsiblee

Terminate ; (x , u” (x , u )

3 L NP

i t

Choose the next S in |

accordance with the rules

i
§ of section 2.2 !
|

b 8

Yes S consistent?

!
—
- a

*
Figure 1
A Progedure for Concave Programming With Linear Constraints
*
As noted in the text, sten 4 can and should be incorporated (at little or

no additional ccmputational cost) into steps la or lb.
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must be transferred to step la,

Remark: If the initial trial set S° can be chosen to be a subset of

B, (e.g. So = @ ) then all optimality alarms can be ignored, &s can any
feasibility alarm which leads to an inconsistent set when heeded. This
follows because any consistent and independent but invalid set with no
excess giv.s at least one (feasibility) alarm from its deficiency, and
heeding that alarm must obviously lead to another consistent and inde-
pencdent eot. Sipilarly, if So can be chosen to contain A , then all
feasibility alarms can be ignored. Thus certain types of prior information

lead to considerable simplifications.

2.3 An Example

The example of Figure 2 is designed to illustrate the operation of
the algorithm and show that not all alarms need be real. For convenience
we present a graphical, rather than numerical, example in two dimensions
(n=2) . We take f(x) to be the ordinary distance from x to a fixed
point xo . By the Kuhn-Tucker Theorem, (=S) 1is a necessary and
sufficient condition for a maximum of f£f(x) over all x in the linear
manifold (x: ax+b = 0, 1 € S} . Hence (=S) yields as its solution
the orthogonal projection xS of xo onto the manifold and the
coefficients us of -V f(xs) expressed in terms of the gradients

1

a1 , 1€ S . Loci of the four constraints are drawn and labeled with
constraint indices; their gradients are also drawn in at selected points.
The feasible region 1s hatched and x. is markcd by a heavy dot.

Let the initial consistent and independent trial set be arbitrarily

chosen as, say, 5 = (3,4} . s® is easily seen to yield a feasibility

alarm for 1 =1 and optimality alarms for 1 =3 and 4 . Hence the



2

A \ -

Figure 2

An Example
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first generation trial sets are (3,4,1} , (4} , and (3} . Now (4)
ylelds only one alarm, an optimality alarm fcr e 4 ; (3) also yields
onc alarm, a feasibility alarm for i =1 ; and (3,4,1) 1s inconsistent--
solving 2383 + z4a4 + a1 = 0 , one obtains optimality alarms for both
1 =3 and 4 . Hence the second generation trial sets are @ ; (3,1) ;
(4,1) and (3,1} . Ve find that P yields feasibility alarms for
1=1,2, and 3 ; that ({4,1)ylelds optimality alarms for 1 =1 and 4 ;
and that (1,3} yields no alarms at all. Hence (1,3} 1is valid and the
computations terminate. A diagrammatic summary of the trials 1is given in
Figure 3. Of course, A = B = (1,3) 1s obvious by inspection of Figure 2,
so that a valid set has indeed been found. Note that d((3,4)) = 2 , and
that a valid set was indeed found in two generations,

Looking back over the calculations, we observe that (3,4} gave
rise to a optimality alarm for 1 = 3 which was not real; and that 9

gave rise to a feasibility alarm for 1 = 2 which was not real. Hence

not all alarms are rcal.

(3,4 Zeroth Generation
¢————'”‘""F‘-1
{1,3,4) (4) 3) First Generation
« N b

(1,4) (1,3) g {1,3) Second Generation
VALID VALID

Figure 3

A Summary of a Sequencc of Trials
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3. REMOVING THE SIMPLIFYING ASSUMPTIONS

It is now shown that the assumptions regarding the feasibility of
(P) and the independence of B can be dropped vwithout impairing the

effectiveness of the procedure presented in the previous section.

3.1 Dropping the Assumption that B is Incenendent

If B 4is dcpcndent, u* need not te unique. Thus A need not
be uniquely defined, and although the definition of a valid set remains
as before we no longer have the characterization A C S C B of validity.
In place of A we define the collection AJ (3 =1,000y k) of all
minimal valid sets, where & valid set is said to be minimal when no
proper subset of itself is valid. It is shown in Proposition 5 that there
is at least one minimal valid se: and that each one is consistent, inde-

vendent, a subset of B , and uy y

see from the nature of the Kuhn-Tucker Conditions that a characterization

J>0,ichA It is not difficult to

of validity is A, cSCB forsome 1%js<k. If S is consistent

J
and independent, it is obvious that S 1is valid if and only if (xs, uS)
satisfies (KT-3) eand (KT-L4) .

The procedure of Figure 1 rests on Propositions 1 through L.
Propositions 1 and 4 and the first part of Proposition 2 do not require
B to be independent. Proposition 5, as we have just shown, takes the
place of the second part of Proposition 2. Proposition 6 is designed to
take the place of Proposition 3. It follows that the procedure of
Figure 1 still applies, and that at each generation of trials at least
one trial set is one unit cf distance closer to the collection of all

valid sets than any trial set at the previous generation.



{ However,an exceptional case arises when a trial set S is not valid but
nevertheless xs = x* , @ poesibility that can arise only when B is
dependent (an example of this situation is given in the Appendix). In
Proposition 6 it is shown that in this situation at least one optimality
elarm is from Jﬁl (s - AJ) , 80 that by heeding the alarms one at a time

S will lead tc at least one set which is closer to some A Thus

J L]

convergence is still assured.

3.2 Dropping the Assumption that (P) is reasible

Assume that (P) has no feasible solution. We shall show that
the procedure of Figure 1 is well-defined and terminates in the positive
branch of step 2b at the first trial set encountered which corresponds
to an infeasible subset of the constraints.

The initial trial set can be chosen to be the empty set, any
singleton, or any other consistent and independent sct as usual. By
Proposition 1 the equations (=S) have a unique solution (xs, us) 50
long as S 1is consistent and independent, and clearly every such set
leads to at least one feasibility alarm (otherwise (P) would be
feasible). Furthermore, the first part of Proposition 4 still holds.
It follows that the procedure of Figure 1 is well-defined and cannot
terminate in the positive branch of step 2a. It remains to show that

the procedure does terminate in the positive branch of step 2b.
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A set SCM of constraint indices 1s said to be infeasible when
{x: a,x +b, = 0, ie S} is mpty, and is said to be minimally infeasible
wvhen no proper subset of itself is infeasible. Let DJ(J = 1,.0.y 4) be
the collection of distinct minimally infeasible sets. Then clearly S C M

is infeasible if and only if D, €S for some 1 < j <d , and consis-

J
tency implies feasibility but not conversely.
Every consistent and independent tricl sct S yields at lcast one feasi-

bility alarm from every D, - S , for otherwise some D, would be feasible,

J J

Proposition T asseris that every inconsistent and feasible trial set

which can arise during the procedure of Figure 1 yields at least one
"optimality alarm" at step 2b from ng (s - DJ) « Thus at each gencration
of trials at least one trial set is one unit of distance closer to

the collection of all infeasible sets than any trial set at the previous
generation, except for certain situctions (associated with inconsistent
and feasible trial sets) when one can assert only that at least one

trial set is one unit of distance closer to at least one of the mini-
mally infeasible sets. The occurrence of an inconsistent and infeasible
trial set in a finite number of generations is thereby assured. A

crude upper bound on the required number of generations is the distance
from the initial ¥rial set to the minimally infeasible set which is
farthest from it. Proposition T also asserts that zS 20 for all
infeasible sets which arise in the procedure of Figure 1. Thus termination
in the positive branch of step 2b is assured.

Remark: The remark at the end of section 2.2 can be generalized to the
case where it is not known vhether or not (P) is feasible., Let the
initial trial set be the empty set and ignore all optimality alarms as

well as feasibility alarms wvhich lead to an “' .« 3istent set when heeded.
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This strategy was seen to be justified when (P) is feasible. When (P)
is infeasible, since trial sets can only grow es generations pass the
situation will eventually be reached vhere a next generation cannot be
defined because every feasibility alarm leads to an infeasible, and
therefore inconsistent, set. This situation is the signal for termination

wvhen this strategy is used.

L. THE QUADRATIC CASE

Specialization to quadratic programming is natural and easy.

When f(x) = %xth + oS , Where C is an n by n negative
definite (symmetric) matrix and c¢ is an n-vector, £ meets the
requirements stated in the introduction and (=5) is a system of linear
cquations with the unique solution (assuming that S is consistent and

independentg/)

1t - -
[ASCIAS]l(bS-AsClc);u§=O,ieM-S

-1 t S
-C (C + AS us) )

uS
S
S

X

where t superscripts denote transpose, A_ 1is a matrix with rows ai -
»

ieS , and u: and bS are similarly defined. A computer routine for

implementing Figure 1 would invert C at the cutset, along with
(Aso ¢t A;J'l , and thercafter use efficient partitioning methods (see,
e.g., (4] and Appendix C of [6]) for recomputing (AS ¢t A;')'l

is altered by one constraint at a time. A similar steategy applies to

S

the solution of L. ., 2z.a, +a, =0 , which can be written (and this
ieo-lo ii io

formula applies whether or not f 1is quadratic)

-1 ,t,-1

g/If S were dependent, [AS C AS] would fail to exist.
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Additional computational eccnomies by nartitioning can be obtained when

some of the constraints are simple non-negativity constraints on the

variables.

4,1 Relation to the Algorithm of Theil and vanm de Panne

The nresent algorithm soecializes to Theil and van de Panne's
algorithm [8] for quadratic orogramming under their assumption:é/

(8, p. 9], which can be phrased as follows: (a) (P) has at least
twvo different feasible solutions, (b) C is negative definite, (c)
aixs + by #0, 1 c M-3, for every consictent set S, and (d)

the initial trial set is the empty set. Assumption (c) is strong and often
difficult to verify. It can be shown to be equivalent to requiring for
cvery consistent set © that if (xs, uS) satisfies (=S) then

u? £0 for all i ¢ 5 ; in other words, degeneracy is completely
excluded. Assumption (d) is not, of course, on assumption in the true
sense of the word, but rather a convention--vhen it is follewed, the
remark at the end of section 2.2 applies and the procedure of Figure 1
is simplified.

The developments of this paper show that Theil and van de Fanne's
alporithm is not impaired if their assumption (c) is dropped, and that
assumpticn (a) may a2lso be dropped if it ic understoed thet the infcasibility
of (P) is distinguished by the occurrence of & generation at which at

least one feasibility azlarm occurs and every feasibility alarm leads to an

§/Boot 1,2,3] has rederived the algorithm of Theil and van de Fanne,

but invokes similer assumptions (although he weakens assumption (c) sormewhat).
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inconsistent set. An important extension is obtained if assumption
(d) is dropped vwhen a priori information regarding B is available, for

then S° cen very likely be chosen such that d(So) < d(¢) (nopefully

a(s°) << a(¢) ) and the celculation time can thereby be greatly recuced.

5. Discussion

It is evident that the algorithm of Figure 1 will be efficient

vhen: (a) only a short time is required, on the average, to solve (=S')

vhen (=S'') has been solved and S'' gJifferc by only cne index from S'

and (b) S° can be chosen so that d(S®) is reasonably small, as it
often can be when a priori knowledge regarding A or B 1is available
due "> familiarity with the given problem or one quite similar to it
(as in sensitivity aralysis). Factor (a) determines the iteration time,
and (b) the number of iteratioms.

When £(x) is quadratic, it was observed that, due to linearity,
can be solved very rapidly for a sequence of trial sets by making use of
partitioning and bordering methods for matrix inversion and reinversion.
In other cases, methods in numerical enalysis for solving (partly

nonlinear) systems cf equations can be brought to bear, with simplifi-

.
J

(=8)

cations arising for special classes of problems (such as linearly separable

objective functions or non-negativity constraints). As an alternative

to the direct solution of (=S} , one may wish to use the fact that

X is charactcrized by the property that it meximizes f(x) subject to

- .
a,x + b, =0 ,izc . If x is found by a gradicnt-directed

. |

search or some other method, then v is easily found as -Vf(xs) Ag(As

vhere Ag is a matrix vith rows a, , i ¢$ (partitioning methods can

be used to keep track of the required inverse efficiently).

A5

t)-l

’



With regard to factor (b) it must be voserved that when a(s®)
is large not only might a very large number of trials be necessary, but
also the amount of storage required for computer implementation of the
rules of section 2.2 could become onerous. In this case other strategies
for determining the sequence of trial sets should be considered. For
example, if a large pronortion of all alarms were real (as has been
observed in numerous triel ciomples) then the ©olloving "Morkov"
strategy would prove to be an effective alternative to the one of section
2.2: heed one alerm at random. Storage is negligible, and although it
is possible for this strategy to consume an infinite number of trials, the
expected number of trials before convergence would be substantially
smaller than for the previous strategy (for vhatever consolation it may
afford, we point out that it can be shown using the theory of Markov
processes that the "Markov" strategy leads to convergence within a
finite number of trials with probability one).

In closing, we observe that the: algorithm can easily be medified to
incorporate consistent and independent linear equality constraints&/
as well as inequality constraints in a more efficient menner than by
rewriting them as pairs of inequalities (or using some similar device).
It is easy to see that the indices of these constraints should be included
in every trial set. This may be accomplished by including them in the

initial triel set and then ignoring throughout the calculations any

E/It can be shown that the hypothesis that f assumes its unconstrained
maximum can be replaced in this cese by the veaker hypothesis that f
assumes its maximum over the linear manifold determined by the linear

equality constraints.
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op-imelity alarms which they happen to give. 1If the equality constraints

are not independent, a maximel independent subset thereof should be used.
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ADPPDITDIN

In all of the propositions of this appendix, f£(x) is assumed to be

differentiable, strictly concave, and to achiecve its unconstrained maximum.

ILemma 1:

The maximum of f(x) is uniquely achieved over every pon-empty closed

convex subset of n-dimensional Euclidean space En .

Proof (outline): Let X be a non-empty closed convex set in E® . Put
z=1{z: z% f(x) for some x ¢ X} . It is easy to see that Z is non-empty,
convex, and bounded from abcve; it can also be shown to be closed. The
attainment of the maximum follows immediately, and is unique by the s¢rict

concavity of f .

Proposition 1:

If SCM is consistent and independent, then the equations (=S)

have a unique solution (xs, us) .

Proof: Since S 1is consistent, the set ({x: ax +b =0, i¢ s} is
non-empty as well as closed and convex. By lLemma 1 the maximum of f over
this set is achieved uniquely. It is well-known that a solution (xs, us)
of (=S) is a necessary and sufficient condition for this maximum.

Hence xs is unique. By the independence of S , us is also unique.

Proposition 2:

Assume that (P) is feasible. Then there exists a triple
* * % %
(x, u, s) satisfying (KT-1,..., 4) , and x 1is unique. If, in

*
addition, B 1is independent, then u 1is also unique.



23

Proof: By Lemma 1, (P) has a unique optimum x' . The existence of
u" and S*EM such that (x*, u*, S*) satisfies (KT-1,..., 4)
is assured by the necessity of the Kuhn-Tucker Theorem; the uniqueness
of x* in such a triple follows from the sufficiency of the Kuhn-Tucker
Theorem and the uniquencss of the optimal solution of (P) .

When B 1is independent, the uniquenecs of u* follows from
(KT-l) upon using the uniqueness of x* , the independence of B,
and the fact that u: #0 only if 1 ¢ B (vwhich follows from the

*
uniqueness of x and {KT-2)) .

Proposition 3:

Assume that (P) is feasible and that B is independent. Let S
be consistent and independent but not valid. Then either aixs + bi <0

for some i ¢ A-S , or ui <0 for some 1 ¢ S-B, or possibly both.

Proof: We proceed by contradiction. Suppose that (i) aixs +b, 20,

Q
i ¢ A-S, and (ii) u; =0, 1i¢S-B.
Then from (ii), the Kuhn-Tucker Theorem, and the definition of

(xs, uS) , it follows that xs is an optimal solution of the problem

Maximize f(x) subject to

aix + bi

a.x + bi 20, 1¢eS-B .

0, i€ 5NB

By (1), it follows that x> 1is 8150 optimal in the problem
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Maximize f(x) subject to
(1) a,x+b, =0, 1¢ SNB

a,x+b 20, 1c¢ (s-B) v (A-8) .

#*
Now by the Kuhn-Tucker Theorem, X is optimal in

(2) Maximize f(x) subject to a,x+b 20, 1ich.

Since the feasible region of (1) is included in that of (2), and since

» *
x 1s feasible in (1), x is also optimal in (1). But (1) has a umique

#*
optimal solution. Consequently, xS b

* »
To prove u> = u' , note that x° = x' implies SC B and that
* *
(x', u°) satisfies (=S) ; that (x', u') satisfies (=B) ; &nd epply
the independence of B .
S S LI

Thus (x°, u”) is identicel with (x, u ) , and therefore satisfies

(KT-3) and (KT-4) as well as (KT-1) and (KT-2) . Consequently, we

obtain the contradiction that S is valid.

Remark: Proposition 3 implies that when (P) is feasible and B is
independent, heeding the alarms due to a consistent and independent set
one at a time leads to at least one set which is one unit of distance
closer to the closest valid set--and, in fact, one unit of distance closer

to every valid set.

Lemma 2:

Let Il’ 12, and I, be disjoint subsets of M . Exactly one of the

3

following systems has g solution:

(i) a;x+b =0,1iel

2§

<
ax + bi 0, 1ice 12

ax+b 20, iel

i i 3
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(11) y, o, =
I 1U§2UI 3 p B

< y. b, +1 =0
IlUIgnI3 i i

yiSO,1612

Yy 20, 1c¢e€ I3

Proof: The proof of this icuac follows fron the dualty theorcem of lineor

programzing [5].

System (i) has a solution iff thc lincor progromiing problem
(1) Minimize ox subject to system (i)
is feasible. System (ii) has a solution iff the linear programming problem

Max§m1ze (-bi) subject to

Y.
11U§2‘¢3 i

(2) 2 y, a, =0
IlU12UI3 g

4

yi { <@ 5iNe 12
20,1€I3
has en unbounded optimal value; for if y° satisfies (11) then oy° is

feasible in (2) for all regl # 2 O and oy° (-b ) =8 2o as
Ilu 2UI3 i i

0 =« , and conversely if the value of (2) can be made arbitrarily large
then by the homogeneity of the constraints it can be made equal to unity.
Observing that (1) and (2) ere dual linear programming problems and that
(2) is feasible (e.g. put y = 0 ), by the dualty theorem we have that (1)

is infeasible iff (2) has an unbounded optimal value. This completes the

proof,



Proposition 4:

Iet SCM be consistent and independent, and let e xs +b, <0,

1q 1o

Then SUio is inconsistent if and only if it is dependent, apmd if it is
dependent then
(1) 1B 2y 8 * oy 1 =0

has & unique solution 2> and {sua _ i} 1is consistent and indepcndent
S

for any i €S such that 2z, <O . If, in additionm, (P) is feasible,
then inconsistency of SUi 8 implies that the emcess of S is non-empty
eand theat zi <0 for some i therein.

Proof: Since S is independent, SUi is dependent iff (1) has e solution,

By Lemma 2, SUio is inconsistent iff

1Y% Y % .o
(2) LT

188 Vg Pyt Yy Py =l
has & solution. Thus to show that Sui 5 is inconsistent iff it is devpendent
it is equivalent to show that (1) has @ solution iff (2) does. To establish
that (1) has a solution when (2) does, let y' be a solution of (2) and
note that it follows from the definition of x° and Lemms 2 that y! > O ;
aence zi = (yi/yio) , 1ie5, solves (1). To establish the converse, we

i

8 >0 if 2z' solves (1). Suppose the contrary. Then it must be that

shall show that y' =8z} , 1¢S5, and y] =6 solves (2) for some real
)

(3) i§sz'b +b =20,
1

and upon multiplying (1) by x° and edding the result to (3) one would obtain
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z 1 £ 5 + . + >
NEH (ai X bi) (a1 ' b, )20,
o) o)
vhich would lead to & contradiction of the definition of xS . The »roof

that SUio is inconsistent iff it is dependent is complete.,

[
When Syui is dependent, (1) rust have a unigue solution z° by

the independence of S . To prove that [SUiO - i} 1is consistent and

independent for any 1 such that 2z, < 0, it suffices to prove this

S
i
% O « Independence is an easy con-

statement for any i such that z;

sequence of the indevendence of S . To show consistency, by Lemma 2

it is equivalent to show that the existence of ¥ such that

v ~ -~ — . v ~ ~
e . Yoo, Yy, a, =0 and o y. b. +¥, b, +1 =0, vhere
i€s I GO | TR ig5-1, Yi i i, 1

z? # 0 , leads to a contradiction., The contradiction is obtzined as
*

follows, Assume that ii # 0 , for othervise by Lemma 2 S - i,
0

would be inconsistent, which would contradict thc consistency of & .

- v /v + = . : ~ > 1
Then 1§s-1* (yi/yio) a, aio 0 But by the uniqueness of the solution

of (1), this is impossible when z? #0 .
*

Finally we nrcve that if (P) is feasible and S is inconmsistent,

(]
then S has & non-cmpty cxcess and z; < O for at least one i ‘therein.

C
(]

Suppose to the contrary that z4 20, 1 ¢ E-B, where we do not rule out

the possibility that G-B = ¢ . Then for some 6°> O one would have

Q
T. 08 z7a, +06 a, =0
ie5s A I i
o
o S .0
.0 z,b, +3 Db, =-=-1,
ies i 1 10

vhere 9° z? 20, 1ic¢5-B, and by Lerme 2 the system

a.x + b,
i i

a,;x +b, 20, ic {V—B}Uio

=0, 1ic SNB
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wvould have no solution, thus contradicting the fact that

* +b, =0 i B

*
aix + bi >0, M~B .

This completes the nroof,

Icmma 3:
Let d bYe z given n-vector, If igf Uy ai = d has a non-negative

solution, then it has 2 non-necgative solution u1 such that
1> 0)

S T u; >0} 1is indevendent.

Proof: See [5, p. 50].

Proposition 5:

Assume that (P) is feasible. Then the collection AJ(J = 1,444, k)

of all minimal valid sets for (P) is not empty, and each Aj
A
indepcendent, a subset of B, and u J >0 for each i ¢ A, . Furthermore,

1 J

an arbitrary set s° is valid if and only if Ajo c s° C B for some

is ccnsistent,

1= josk.,

¥ * %
Prcof: By Proposition 2, there is at least ocne triple (x , u, S )

which satisfies (KT=1,.¢4e, 4) o If s is not minimal, then frcm the
nature of (KT-1,..., 4) and Iemma 3 it is cleur that one may delete
censtraints from S* anfl construct new couples (x*, u) satisfying the
associated (KT-1,..., 4) until & minimal volid sct is obtained. Thus
there is at least ore minimel valid set,

et Aj be any miniwmol valid set. By the definition of velidity,

A, A

there exists u Y (at this point we cannot acssert the uniquemess of u

J)
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A
*
such thet (u 9, x') setisfies (KT-1,..., 4) associated with Ay
It follows immediately that A j € B, and is therefore consistent. From
A

the nature of (KT-1,..., L), uiJ >0 for all ic4, ; othervise
would be valid. The independence of A

a proper subset of A follows

J
by similar reasoning with the aid of ILemma 3.

J

The criterion for the validity of an arbitrary subset of constraint

indices follows straightforwardly by arguments similar to those used above,

Proposition 6:
Assume that (P) is feasible, Iet S CM be consistent and

independent but not valid. If x> # x , then for each minimal valid set

A‘j we have either aixs -0-1:i <0 for some i ¢ AJ-S s Or ui’
S

%*
some i ¢ S-B , or possibly both. If, on the other hand, x =x ,

<0 for

S
then ng (S-AJ) #¢ and u;j <0 for some 1 therein.

#*
Proof: Assume xs # x . Ve proceed by contradiction. Suppose for some

153 <k that (1) aw.xs+'b120, Lehy -5, end (i) ufzo, 1¢8B.
i (o]
Then by arguing exactly as in the proof of Proposition 3 with A 3 in
(o}
*
place of A , ome may derive the contradiction that x° =x .

*
Now we assume xs =X . Observe that S C B , and therefore since

S is not valid we have Ajts, J =1,e00, k o Clearly S -AJ te,

J=1,.0., k , for otherwise S would have 10 be a proper subset of some
A 5! which would contradict the uniqueness of the positive representation
of -V£(x") 1n terms of the a, , ie Ay o
f < 0 for some i therein., A useful identity is

k
A fortiori, ng(s - AJ) e .
It remeins to show that u

k

Lkl(s A)=8-5.N A
i SRl i B
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k
and for simplicity ve wvrite I for 5. 0. A, .

We may assume: (a) thet I £ ¢, for otherwvise § - I =5 and

«
hence the dcsired ccnclusion (which becomes u; <0 forsome i¢S)

(«

must obtain or else (x”, us) would satisfy (KT-4) as vell as

(KT-1, 2, 3) and S would be velid; and (o) thet uf < 0 for some

i ¢ I, for otherwvise the desired conclusion rust obtain or else u? 20

for 2111 i ¢S and S5 wvould again be valid. \le shall prove that

u? <0 for some i ¢ S - I by supposing the contrary and finding io c I

k
(‘l|
such that ojél

every valid set contains at least one Aj » To find such an io , it

Aj - io is valid, thereby contradicting the fact that

~

suffices to find io - I (nd O cuch thet

(1) vr(x)

=t}
N
O
~-
(9]
o}
~~
w2
no
>~
]
.

+ T 4, a, =0
iefsfh a-1 3t} wa :
J=l 3 o

for then (x, §) satisfics (KT-1,..., 4) associated vith {Sjgl Aj-io} .
We now vroceed to find such an iO an QO . .

. Now for each minimal vealid set, we have uij >0, 1 e Aj , and

u J satisfies

* s
of(x )+ . T uda, =0.
ien, 1 1
J
A,
I'or convenience, we urite uij for uiJ . Partitioning Aj into I and

Aj - I, adding 211 k such equations and dividing by k , one obtains

* K k
' v = > = .
(2) £(x ) + ot j;l(uij/k) a, + % 3 (uij/k) a, =0
ieh -1
J
Frcm assumption (b) and our supposition we als. have u; 20, ies -1,

@ &
e . o] . .
and u{ <0 forsome 1ie I, and u satisfies
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* S S
r z a, = .
(3) V() 4 g Bopug ey il ey =0

Multiplying (2) by (1-t) ond (3) by t ond adding, where t 1is e real

number, we obtain

(L) Vf(x*) + igl [t ui + (1-t) ng(uij/k)] a, +t ie%-l u? a, *
(1-t) ?:1 z (uiJ/k) a, =0 .
ieAj-I
Put
[ x A
e & < op g (510, /6 - uf)’) .

g k
By construction, clearly 0 < t° <1 oand [t° u; + (l-to) jf:’l(uij/k)] 20

for all i ¢ I with strict cquality holding for at least cne i , say
i . Upon making the oppropriate identifications of U in () with

t = t°, it follows thet (1) holds. This completes the proof.

Proncsition_z:

Assume that (P) is infeasible. Iet O C M be consistent and

o

independent, ond let SUi_ be inconsistent, wiere a, x” + b, <O0.
o o

Then

wn
)

. . D . . " c o s
has a unique solution z~ , and z =20 if and only if Tﬂlo is in-

d
feasible. Furthermore, if SUi_ is feasible then jgl{(suio) - Dj} £ 7

o

and z; < 0O for scme 1 thecrein.

-

Proof: The existence of the unique solution 2z of (1) is known from
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Proposition 4, and the assertion that z°

>0 iff SUio is infeasible is
a consequence of Lemme 2 and the relationship established in the proof of

Proposition 4 between the solutions of (1) and of

a, =0
(2e) 1esaioyi i

S y. b, +1 =0,
(2v) jesus "1 1

)
Assume that SUio is feasible. This, with the inconeistency of
SUi o @nd the definition of © , implies by Lemma 2 that (2) has a
solution y' such that y;_ >0 and y:!L <0 for some 1 ¢ S . First
we show that [(SUio) - Dj}o;é¢ b J =l,ees, 4 « Suppose the contrary.

Then SUio c D'j for some 1 < Jo <d , and in fact Sl!io c DJ since
o o

SU:i.o is feasible. Since D is minimally infeasible, there exist real

Jo
numbers LA >0, ic¢e¢ DJ , such that
0

(32) 2 LA T wa =0

ief - ie SUi

LelDJo SUio] € o
(3v) ¢ T ovya;+ Ewibi+l=0.

1¢iD, -0}

5, 0 ie SUL_

Letting y =y' in (2) and taking a convcx combination of (2a) with (3a),

and of (2b) with (3b), one obtains for any real t

(La) T (1-t) v, o, + T [(2.-%) v, o+t y;] 8, = 0
-SU
1e[DJ° S io} ie SUL
(kv) T (1-t) v, b+ T [(1-t) v, +t y!) b, +1=0.
te(p, -5UL,] te st :
o £ .Be
Since y:'l<0 for some ic¢ S, y; >0, and wi>0, ieDJ , We can choose
o o

an appropriate 0 < t® <1 to make [(1-t°) v, + £° yl120,1es80i,

with strict equality holding for some i ¢ S . Hence & proper
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subset of D would, by Lemma 2, be infeasible--thus violating the

J
(¢)
minimal infeasibility of DJ . Hence our supposition must be wrong and
(o]
a fortiori JQl{(sma) - DJ} £0,3=1eee, & . Itremains to show
that z <O for some i therein. A useful identity is

d
ng{(SUio) - DJ} =sUi - (sUi) ng Dy

and for simplicity we write I for (SUio) 351 DJ .
d
We may assume (a) that I # @ , for otherwise ng{(sLlio) - DJ} = st

and the desired conclusion follows from the known fact that zf <0
i’< O for some i e¢ I , for otherwise
s

the desired conclusion again follows from the known fact that =z " <0

for some i ¢ S . Using these assumptions, we shall prove the desired

for some i ¢ S, and (b) that 2z

assertion by supposing the contrary and finding i, ¢ I such that

is infeasible, thereby contradicting the fact that

a
(sui,) g9 Dy - iy

every infeasible set contains at least one D To find such en i, ,

J L ]
it suffices to find i, e I and § >0 such that

zyiai=0

ief(sVi)) Jg)l Dy-iy}

y bi+1=0,

1e[(sU1o) ng Dj-i*}

for then by Lemma 2 {(SUi ) ng D,-i,} would be infeasible. We now

S

g =22

proceed to find such an i, and ¥ under the supposiuica that 2z
i € SUio - I .

Since each D, is minimally infeasible, there exist real numbers

J

w,, >0, ieD

13 J =1,e0ey @ , such that

J ’
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(58) Tw =0 and
1eDJ iJ i

(Sb) iegjwiJ bi +1=0.,

Partitioning DJ into I and D‘1 - I , adding all 4 equations of

type (5a) and dividing by d , one obtains

(6) B By e vl Tl /e -0,

1eDJ-I

Similarly, the equations of type (5b) yield
(6év) T il(w /d)‘b-o-d g(v,./a)b, +41 =0
161 381(V13/9) By * gy 13/¢) By .
1eDJ-I
Putting y =y' in (2) and adding t times (22) to (1-t) times

(6a) yields

a
T [t y! + (1-t a)) £t
(Ta) sFrlt ) + (-t) (v, /a)] ey + oo, -:Iri

le 2 (l t) (w“/d) 8, =0.

Similarly, (2b) and (6b) yield

d
[t y! + (1-t a)l v Lty

+ ng 1¢§J(;-t) (v /d) b, +1=0.

Since the signs of zf

and (b) and our supposition we can choose an appropriate 0 < t° < 1

and yi agree for i z S , by assumptions (a)

a
to make [t° y] + (1-¢°) & (¥,/a)120, 1 ¢ T, vith strict equality
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holding for some i, ‘therein., Upon making the appropriate identifications

in (7a) and (7b), the desired i, and § are at hend. This completes

the proof.



Example

The example of Figure A-1l is designed to show that xs = x* is
vossible wvhen S 1is consistent, indopendent and invalid end B 1is
dependent. The same ccuvcntions are followed here as in the example of

section 2.3 of the text.

o

~.
'~
- L
iz

Figure A-1

Clearly B = {1,2,3]} , and we mey take the minimel valid sets as
A = {1,2) end A, = {1,3} (k = 2) . Thus the consistent and independent
trial set {2,3} is not valid. Nevertheless, 3[2’3}= x .

In accordance with the pertinent assertion of Proposition 6, S = {2,3}
yields an optimality alarm in {S - Al} uf{s - Aa} = (2,3} , namely for i =3 .
Heeding it leads to the trial set ({2} , which yields a feasibility alarm
for 1 =1 ; heeding this feasibility elarm leads to {2,1} , vwhich is

valid (i.e. it yields no alarms).



1.

2.

3.

Se

6.

37

REFERENCES

Boot, J. C. G., "No*es on Quadratic Programming: The Kuhn-Tucker
and Theil-van de Panne Conditions, Degeneracy, and Equality Constraints,"

Management Science, Volume 8, October 1961, 85-98.

Boot, J. C. G., "On Trivial and Binding Constraints in Programming

Problems," Management Science, Volume 8, July 1962, 419-L41.

Boot, J. C. G., "Binding Constraint Procedures of Quadratic Programming,"

Econometrica, Volume 31, July 1963, 46L-L498,

Faddeeva, V., Computational Methods of Linear Algebra (C. D. Benster,

translator), Dover Publications, New York, 1959.

Gale, D., The Theory of Linear Economic Models, McGraw-Hill, New York,
1960.

Geoffrion, A., "A Parametric Programming Solution to the Vector
Maximum Problem, With Applications to Decisions Under Uncertainty,"
Technical Report No. 11, Graduate School of Business, Stanford
University, February 1965. Also issued as Vorking Paper No. 68,
Western Management Science Institute, University of California,

Los Angeles. A revised version of the third chapter will appear

as "Parametric Coneave Programming” in a professional journal.

7. Kuhn, H. and A. Tucker, "Nonlinear Programming," in J. Neyman (ed.),

Proceedings of the Second Berkeley Symposium on Mathematicel Statistics,
University of Californie Press, Berkeley, 1951, 481-492,



38

8. Theil, H. and C. van de Panne, "Quadratic Programming as an Extension
of Classical Quadratic Maximization," Management Science, Volume 8,

October 1960, 1-20.



